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Mammalian spermatogenesis is a complex biological process occurring in the seminiferous tubules in the testis. This process rep-
resents a delicate balance between cell proliferation, differentiation, and apoptosis. In most mammals, the testicles are kept in the
scrotum 2 to 7◦C below body core temperature, and the spermatogenic process proceeds with a blood and oxygen supply that
is fairly independent of changes in other vascular beds in the body. Despite this apparently well-controlled local environment,
pathologies such as varicocele or testicular torsion and environmental exposure to low oxygen (hypoxia) can result in changes in
blood flow, nutrients, and oxygen supply along with an increased local temperature that may induce adverse effects on Leydig cell
function and spermatogenesis. These conditions may lead to male subfertility or infertility. Our literature analyses and our own
results suggest that conditions such as germ cell apoptosis and DNA damage are common features in hypoxia and varicocele and
testicular torsion. Furthermore, oxidative damage seems to be present in these conditions during the initiation stages of germ cell
damage and apoptosis. Other mechanisms like membrane-bound metalloproteinases and phospholipase A2 activation could also
be part of the pathophysiological consequences of testicular hypoxia.

1. Introduction

Life on earth appeared about 3,000 million years ago when
there was practically no oxygen in the atmosphere. It only
reached its present level in the atmosphere approximately 350
million years ago (carboniferous period), clearly showing
that cellular life on earth was well adapted to hypoxic con-
ditions a long time before the present oxygen-dependent
organisms appeared on earth [1]. Thus, anoxic oxidative and
reductive chemical processes and their associated regulation
were inherent in life before the carboniferous period, help-
ing to explain the evolutionary and molecular basis of pre-
sent marine and terrestrial animal adaptation to hypoxic
conditions [2, 3]. The processes that use oxygen as final
electron acceptor in one-electron transference were selected
by evolution as a highly efficient mechanism for oxidative
processes in cells. These processes, however, inevitably pro-
duce reactive oxygen species (ROS) that, in turn, can lead to

the formation of reactive nitrogen species (RNS). Both ROS
and RNS can modify biomolecules and affect lipids, proteins,
and nucleic acids (e.g., [4]).

In multicellular animals, O2 supply to tissues is generally
provided by pressure-driven volume flow in a vascular sys-
tem. Hypoxia, defined as the condition of low oxygen pres-
sure or content in the environment, organism or tissue, can
be the result of atmospheric low oxygen pressure (hypobaric
hypoxia), low oxygen content in aquatic environments, or, in
the case of organisms or tissues, to a decreased O2 exchange
with the environment or a decreased O2 supply by the vas-
cular bed.

Most mammals have little tolerance to hypoxia and their
response involves the activation of regulatory mechanisms
at systemic, tissue, and cellular levels [5]. The mechanisms
related to systemic response to hypoxia include an increase
in pulmonary ventilation and subsequently a compensatory
rise in the capacity of oxygen transport to the different
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tissues by increased erythropoiesis [6–8]. At the cellular level,
an induction of glycolytic enzymes and glucose transport
is produced under hypoxic conditions. This generates an
increase in glycolysis that facilitates the production of ATP by
this anaerobic metabolic pathway [7, 8]. At the tissue level,
a hypoxic condition induces neovascularization or angio-
genesis (new blood vessel formation from preexisting vessels)
which requires a series of events including proliferation,
differentiation, and migration of endothelial cells, vessel
formation, and vascular maturation. All this is driven by
vascular growth factors (e.g., vascular endothelial growth
factor, VEGF) [7–10]. The increase in VEGF secretion and
the expression of their receptors in cells exposed to hypoxia
is mediated by hypoxia-induced factor 1 (HIF-1) [8, 11].
This is a heterodimeric transcription factor composed of two
subunits HIF-1α and HIF-1β that control the expression of
numerous proteins related to the cellular hypoxic response
[11–14]. The HIF-1β subunit is a constitutive 90 KDa nuclear
protein that does not respond to changes in oxygen level,
whereas the HIF-1α subunit is a 120 KDa hypoxia-inducible
protein [14–17]. Under normoxic conditions, HIF-1α
becomes hydroxylated and ubiquitinated and is sent to deg-
radation by the proteasome [15]. HIF-1α prolyl hydroxy-
lases are Fe(II)- and 2-oxoglutarate-dependent dioxygenases
which require ascorbate and molecular oxygen for their
catalytic activity [13, 14]. In the catalytic center, the ion
Fe(II) can be displaced or substituted by other transition
metals such as cobalt, nickel, and manganese, with the loss
of its catalytic activity. This inhibition of prolyl hydroxylases
and the binding to HIF-1α itself generate the stabilization of
HIF-1α, mimicking a cellular hypoxic situation [18].

A systemic hypoxic condition can be described in many
situations such as high altitude flight [19], diving (human
or animal) [20, 21], chronic obstructive pulmonary disease
[22], and sleep apnea (e.g., [23]). Because, however, the
relation between the above-mentioned conditions and tes-
ticular function has received little attention in the literature
(see [24] for sleep apnea), in this paper we will address
the consequences for the endocrine homeostasis and sperm
output in the testis exposed to environmental or local
hypoxia (e.g., varicocele or testicular cord torsion). Thus far,
features common to these physiopathological conditions are
temperature increase and ROS production, two events that
could in part explain the changes in cell endocrine function
and the decrease of sperm production in men exposed to
hypoxia or with a condition that impairs the blood flow to
the testis.

2. Environmental Hypoxia and
Male Reproduction

With the exception of the unique native population of Hima-
layas and The Andes, human exposure to high altitude is not
a common condition. A deleterious effect on reproductive
function has been attributed to exposure to high altitude
since the Spanish conquest of America. Some chronicles from
the XVI century already stated fertility problems in humans

and animals that reached for the first time America’s high-
lands [25]. At present, these fertility changes are observed in
mountaineers, workers, and border personnel in situations
that imply acute transfer to highlands [26]. However, it seems
to be absent in permanent inhabitants of the highlands such
as the stable populations of the Andes and Himalaya ranges.
These could be at the root of why some of the studies con-
ducted to prove a relationship between highland populations
and fertility have often yielded nonconclusive results [26–
28]. Most of the studies that have shown alterations of the
male component of fertility with hypoxia in humans have
described low sperm counts, sperm mobility, and decrease
in plasma testosterone after several weeks of exposure [29–
31]. In animal models such as rodents, highly vacuolated
Sertoli cells, decreased germ cell numbers, pyknotic germ
cell, expansion of testicular blood vessels, Leydig cell number
reduction, and changes in testosterone levels have been
described in hypobaric hypoxia [32–39].

As the hypoxic testis is the focus of our paper, it is worth
mentioning that the main testicular functions are related to
endocrine secretion and its associated regulation and to the
output of functional sperm cells (spermatogenesis). Whereas
the endocrine function is mainly accomplished by Leydig
cells in the interstitium (Figure 1), the production of mature
functional sperms takes place in several structures in the male
reproductive system, including the seminiferous tubules
(that releases immature spermatozoa) and the epididymis
where the spermatozoa mature and are stored. The seminif-
erous tubules are the place where proliferation of germ stem
cells occurs in contact with the basal membrane and basal
part of Sertoli cells, progressing and differentiating through
meiosis and spermiogenesis in a centripetal direction toward
the lumen of the tubules (Figure 1) [60]. Rat seminiferous
tubules are thought to be under an O2 tension lower than
the interstitial O2 tension in normal conditions [12, 61]. In
spite of some controversy surrounding the true values of
O2 tension in the seminiferous tubules, it is clear that the
testicular interstitial O2 tension is approximately 20% of the
testicular artery blood oxygen pressure (i.e., 12 to 15 mm Hg;
[61]). This oxygen tension is expected to decrease under low
atmospheric O2 pressure (hypoxia) or under conditions of
reduced blood flow to the testis (e.g., varicocele or testicular
torsion). Thus, whereas oxygen distribution in the testis is
determined by the testicular microvasculature, the access
to oxygen by spermatogenic cells seems to be determined
mainly by O2 diffusion in the interstitium and seminiferous
tubules.

2.1. HIF-1α and Oxygen Sensing in the Testicles. When cells
are exposed to a hypoxic environment or a transient ische-
mia is induced in rat testicles, a rapid (within minutes) accu-
mulation of HIF-1α occurs, not accompanied by an incre-
ment in HIF-1α mRNA expression [62, 63]. HIF-1α mRNA
is expressed in the whole male reproductive tract under phys-
iological oxygen levels [64, 65]. In the testis of rats exposed
to hypobaric hypoxia, HIF-1α was prominently expressed in
the nucleus of pachytene spermatocytes and to a lesser extent
in spermatids and in the lumen of seminiferous tubules
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Figure 1: Histological organization of the seminiferous tubules. The figure shows two microscope images of rat testis: (a) low magnification
picture of one seminiferous tubule and seminiferous epithelium containing Sertoli and germ cells at different stages of differentiation. Bar
100 µm; (b) a seminiferous tubule section indicating germ cells at different stages of differentiation. Bar 25 µm.

where sperm are located [65]. Out of the vast number of
genes induced by HIF-1, one of the most important is VEGF,
which has been described in Sertoli and Leydig cells [66].
Its receptor (VEGFR) is present in almost all testicular cell
populations, supporting the idea that VEGF could act as a
paracrine mitogen and as an angiogenic factor responsible
for the modulation of testicular tissue capillarization and
testicular capillary permeability [67]. In mice, in vivo appli-
cation of VEGF to the testis promotes blood capillary forma-
tion, but not after the application of antisense oligonucleoties
against VEGF [68]. Besides the well-known effects of VEGF
as a vascular permeability enhancer and as a mediator of
angiogenesis, Hwang et al. observed that VEGF produced
an increment in the proliferation of Leydig cells and was an
acute inducer of testosterone in a dose-dependent manner
[69, 70]. Thus, the molecular infrastructure and the signaling
mechanisms for sensing and triggering of a physiological
response are present in testicular cells and, as will be shown
below, can at least partially explain the physiological and
pathological changes associated to environmental and local
hypoxia in the testis.

2.2. Early Testicular Vascular Changes Induced by Environ-
mental Hypoxia. In mice, a significant increase in detectable
interstitial blood vessels was observed 24 hours after the
beginning of normobaric hypoxia [71, 72]. This phenome-
non is probably not angiogenic, representing the opening of
previously closed shunt vessels. This increase in blood vessels
under hypoxia was associated with initiation of vascular cell
proliferation. The number of blood vessels detected in the
hypoxic testis interstitium continued to increase until day 5
but remained stable after that period [71, 72]. It is likely that
the long-term changes in vasculature (>5 days) are associated
with angiogenesis, as reported by Farias et al. [34], which
is consistent with a sustained raise in VEGF in that period
[71, 72].

2.3. Hypoxia and Early Changes in Testicular Steroidogenesis.
Gonadotropins released by the hypophysis enter the blood
stream to reach the testicle, where Luteinizing hormone (LH)
stimulates Leydig cell steroidogenesis in the interstitium,
whereas FSH, by stimulation of Sertoli cells, helps to main-
tain spermatogenesis in the seminiferous tubule. Control
mechanisms for FSH secretion seem to be influenced not
only by testosterone and its metabolic derivative, estradiol,
but also by activins and inhibins produced by Sertoli cells
[60].

Little is known about the relationship between hypoxia
and steroidogenesis, and the scarce studies performed in
humans have been carried out with reduced sample sizes. It
has been observed that in a small group of men exposed to an
altitude of 4,300 m above sea level, their plasma testosterone
level rose by 30% after the third day of exposition [31]. In
another study in which 10 mountaineers stayed in the Hima-
layas for a period of 60 days at 5000 m above sea level, hor-
monal measures indicated reduced testosterone levels at the
end of the period [73].

In experimental mice exposed to normobaric hypoxia,
testosterone levels (plasma and intratesticular) were highest
at 24 hours for plasma testosterone and 48 hours for intra-
testicular testosterone. The early increment of both intrates-
ticular and plasma testosterone might be mediated by VEGF,
as postulated by Hwang et al. [69] and consistent with a raise
in VEGF in mice after 24 hrs of hypoxia [71, 72]. Plasma and
testicular testosterone return to normal levels after 48 and
72 hours, respectively [71, 72].

These results are in agreement with published data on
early testosterone increments in mountaineers exposed to
high altitude or in newborns exposed to neonatal hypoxia
[31, 74, 75]. Testosterone has a well-known relaxing effect
on smooth muscle which can induce a vasodilator effect
in minutes [76–78], an effect that, hypothetically, could be
part of the hypoxia response mechanisms in the testicles
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Figure 2: Diagram of molecular and cellular events triggered by hypobaric hypoxia (HH), testicular torsion (TT), and varicocele (Var). This
model suggests that HH, TT, and Var have a common mechanism of action at the testicular level by inducing oxidative stress owing to an
increase in reactive oxygen and nitrogen species (ROS/RNS) formation and impairment in the oxidative defense mechanisms. Experimental
evidence points to heat stress in HH and Var, but this parameter has not been determined in TT. The increase in ROS/RNS is probably owed to
mitochondrial dysfunction along with activation of enzymes such as xanthine oxidase (XO) or the inducible nitric oxide synthetase (iNOS).
Oxidative stress induces activation of p53, p73, and ASK/p38 MAPK, which stimulate the activation of proapoptotic proteins (e.g., BAX) that
in turn will lead to caspase activation and increase in germ cell apoptosis. The induction of proinflammatory cytokines is probably part of
the response mechanism to cellular damage.

[71]. Testosterone seems to have a relevant role in high
altitude adaptation owing to its identity as an erythropoietic
hormone which acts directly on bone marrow at the level
of polychromatophilic erythroblasts [79]. Thus, testosterone
administration has been shown to stimulate the production
of red blood cells in males, especially elderly males, and it
is associated with the increment of hemoglobin that occurs
during puberty in young men [80, 81].

Thus, an early rise in testosterone in hypoxia and its role
as a vasodilation agent is consistent with its possible role in
early vascular changes in the hypoxic testis, as well as its being
a likely coactivator of the erythropoietic response in hypoxia,
acting both as a local paracrine hormone and as an endocrine
signal toward bone marrow cells.

2.4. Chronic Intermittent Hypobaric Hypoxia: Testicular Histo-
logical and Endocrine Changes. Hypobaric hypoxia is a stress
factor that generates a series of physiological changes in
order to compensate for environmental low partial oxygen
pressure. Exposure to low levels of environmental oxygen and
high altitude tend to trigger chronic mountain sickness
(CMS) in humans and animals not genetically adapted (GA)
to high altitude, for example, llamas or alpacas. The absence
of CMS in GA or nonGA animals or humans appears to be
linked to various adaptations involving certain patterns of
gene expression [82, 83].

With regard to the effects of environmental hypoxia on
male infertility, chronic hypoxia induces a state of reversible
oligozoospermia in healthy men [30]. Previous studies on
nonGA male rats indicated that chronic intermittent hypoxia

reduces sperm motility and the sperm count in semen [41,
84]. A reduced sperm count can be related to the increase
in germ cell apoptosis promoted by this hypoxic condition
[34, 39]. The same results were observed in male rhesus
monkeys [85]. Morphological studies have revealed that
chronic hypoxia causes degeneration of the germinal epithe-
lium, folding of the basement membrane, degeneration and
detachment of germ cells, changes in lipid droplets in Sertoli
cells, and an increase in lipoperoxidation [34, 39]. Other local
changes in the testicles have also been observed, including
an increase in vascularization, an increase in testicular
temperature, a decrease in testicular mass, and an increase
in interstitial space [34, 71].

The mechanism by which permanent decreases in oxygen
supply generate impairment in germ cell development and
death is probably mediated by an increase in intratesticular
or seminal ROS (Figure 2). Although these molecules have
a physiological role in the spermatogenic process, a patho-
logical increase in their numbers would negatively affect the
survival and differentiation of germ cells [86].

On the endocrine side, plasma and testicular testosterone
in mice are significantly diminished at 20 days of normobaric
hypoxia compared with day zero [71], similarly to what has
been described in hypobaric hypoxic animals [31, 37]. This
effect of testosterone reduction associated with long and
intermittent periods of hypoxia has been observed even in
patients suffering from obstructive sleep apnea [87] and in
long-term exposure to high altitude in humans [73] and
is consistent with changes in the Leydig cell population in
experimental animals subjected to this condition [32, 34, 71].
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Table 1: Experimental approaches that prevent testicular and sperm damage during environmental hypoxia.

Hypobaric hypoxia Treatment Mechanism Results versus injury Reference

Acute Cyproheptadine 5-HT receptor blocker
�Effects on spermatogenesis and
testosterone production

[40]

Chronic Caloric restriction ? Suppresses early rise in testosterone [31]

Intermittent
Ascorbic acid

�Oxidative stress in testis and epididymis
�Glutathione reductase activity in testis
and epididymis
� Sperm count

Reversed the effects of oxidative stress in
testis, epididymis, and sperm cells

[41]

Intermittent
Melatonin

(oral administration)

Prevents oxidative damage of enzymes
like superoxide dismutase, catalase, and
glutathione peroxidase

Protective effect against lipid
peroxidation under oxidative stress and
reduction in sperm motility

[42]

Intermittent
Melatonin

(intraperitoneal
administration)

� Levels of LH and FSH
Inhibition of aromatase

No protective effect in testis, and
epididymis
No prevention of reduction in the
numbers of sperm cells

[43]

Chronic and
intermittent

Ibuprofen Decreases hypoxia-induced vasodilation?
Protective effect against hypoxia-induced
seminal lipid peroxidation [42]

2.5. The Temperature-ROS Connection and Spermatogenic
Cell Damage in Environmentally Hypoxic Testicles. ROS pro-
duction requires O2 as a substrate. Counter intuitively as it
seems, hypoxia, as several studies have reported, can increase
total intracellular ROS production in cells and tissues [88–
93]. Consistently with this, evidence of ROS modification of
proteins and nucleic acids has also been reported in yeast
exposed to hypoxic conditions [94]. Environmental hypoxia
leads to vascular changes that are associated with an increase
in testicular temperature (1.5◦C on average, [35]). This
condition was linked to oxidative stress and was prevented
by antioxidant treatment [41, 42]. Although the pathological
role of oxidative stress in male reproduction induced by
environmental hypoxia seems well established (see also
Table 1), the associated rise in temperature needs to be
considered for an understanding of the consequences of
hypoxia on testicular function. As mentioned before, the
changes in subscrotal temperature were relatively mild in
hypobaric hypoxia (1.5◦C on average) [35]. If, however, this
condition is to be maintained chronically during the hypoxic
period it becomes similar to temperature increases in patho-
logical conditions like varicocele (see below). Thus, in the
following paragraphs, we will review experimental testicular
hyperthermia albeit that the protocols used have gone
from mild temperature changes (35◦C) for 24 hrs to acute
(30 min) severe hyperthermia (43◦C). It is worth noting that
the experimental interventions mentioned earlier consist
in external temperatures applied to the scrotum. The true
intratesticular temperature was in most cases unknown (see
[95] for a review).

Heat stress induces general changes in the transcriptome
of mice and human testes, and a total of 67 transcripts were
found to be heat regulated in C57BL/6 mice [96]. Another
study in mice with a heat stress protocol of 35◦C for 24 h
showed that 225 genes were differentially expressed between

fertility-related heat-susceptible and heat-resistant animals
[97]. On the other hand, in humans, it was shown that 31
and 36 known proteins were differentially expressed two and
nine weeks after heat treatment, respectively [98]. Although
the range of functions that the genes upregulated or down-
regulated by heat is broad, many of these genes are associated
with heat stress, cell signaling, and apoptosis.

Under normal conditions, the highest rate of germ cell
apoptosis is observed in early zygotene and ending pachytene
spermatocytes (stages I and XII for rats and mice). The eval-
uation of germ cell apoptosis one to two days after heat stress
showed a significant increase in apoptosis, mainly in the early
(I–IV) and late (XII–XIV) stages. Pachytene spermatocytes,
dividing spermatocytes, and early spermatids were the most
frequent cell types observed undergoing apoptosis [99].
Eventually, spermatogenesis recovers to levels similar to those
in nontreated animals because spermatogonia are relatively
heat resistant, with the exception of B-type spermatogonia of
rams [99, 100] and bulls [101]. Interestingly, isolated haploid
germ cells but not somatic cells undergo apoptosis at 37◦C
under the same culture conditions, strongly suggesting that
heat stress activates the apoptotic pathway mainly in germ
cells [102].

The mechanism by which heat stress induces apoptosis
in germ cells has yet to be defined. In rats and monkeys heat
stress induces translocation of the proapoptotic protein BAX
from the cytoplasm to the mitochondria (Figure 2), where it
helps to release cytochrome c [103–107]. During heat stress,
caspase-9 and 3 (hallmarks of apoptosis) become active, and
their pharmacological inhibition prevents germ cell death,
suggesting that caspases are directly linked to germ cell death
after heat stress [104, 105, 108].

In the testis, the generation of ROS seems to be of para-
mount importance in germ cell apoptosis and DNA damage
[109]. At physiological levels, ROS are essential for normal
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reproductive functioning, acting as metabolic intermediates
and regulating vascular tone, gene expression, and sperm
capacitation [109, 110]. Heat stress induces oxidative stress,
triggering cell survival or apoptosis depending on the cell
type and the extent of the insult (Figure 2). This heat stress
appears related to ROS-generating enzymes that produce
ROS as by-products of their enzymatic activity. Xanthine
oxidase (XO) catalyzes the conversion of hypoxanthine and
xanthine to uric acid, producing hydrogen peroxide as a
by-product, and XO inhibitors suppress testicular germ cell
apoptosis induced by experimental cryptorchidism (testis
subjected to the core body temperature) [111]. There is a lack
of information, however, about whether or not other ROS-
generating enzymes such as cyclooxygenase (COX), lipoxyge-
nase (LOX), NADPH oxidase (NOX), and the mitochondrial
NADH-CoQ oxido-reductase are activated after testicular
heat stress. In other oxidative processes, nitric oxide (NO) is
synthesized intracellularly through the action of a family of
nitric oxide synthetase (NOS) enzymes. These NOS enzymes
catalyze the NADPH- and O2-dependent oxidation of L-
arginine to L-citrulline, producing NO [112]. This molecule
is a free radical and is chemically more stable and less reactive
than other ROS such as the superoxide anion or hydrogen
peroxide [113]. Furthermore, NO in the presence of ROS
can form the highly reactive oxidant peroxynitrite [114]. In
monkey testes, endothelial nitric oxide synthetase (eNOS)
and inducible NOS (iNOS) were found to be expressed
in Sertoli and germ cells. No obvious alterations in eNOS
levels were detected after heat stress, but the levels of iNOS
increased three days after heat treatment compared with
the controls showing a robust increase in iNOS expression
in germ cells [115]. Thus, heat stress seems to induce NO
production and it might contribute to oxidative damage in
germ cells (Figure 2). The molecular targets that are modified
by NO production and the consequences of this RNS in testis
physiology and pathophysiology are still unknown, however.

As described above, many studies have been performed
on experimental hyperthermia in animals, showing the trig-
gering of apoptosis in pachytene spermatocytes [116, 117].
In contrast, few studies of hyperthermia and its associated
physiological and biochemical changes have been performed
in isolated cells. The only study found in the literature
using prepubertal monkey Sertoli cells [118] reported that
adherent junction-associated proteins are downregulated by
high temperatures (43◦C). Conversely, vimentin expression
is upregulated by high temperatures. These changes in
cytoskeletal and junction proteins were thought to be
associated with a marked decrease in androgen receptor (AR)
expression after heat treatment. As was clearly demonstrated
using selective Sertoli cell AR KO mice, testosterone is
essential for spermatogenesis through its actions on Sertoli
cells [119, 120]. Thus, Sertoli cell AR downregulation by
hyperthermia explains, at least in part, spermatogenic arrest
in testis subjected to high temperatures (and hypoxia?). In
spite of the mentioned correlation of AR expression and
hyperthermia, evidence showing the mechanisms connecting
AR downregulation and spermatogenic cell apoptosis under
conditions of high temperature is lacking. In relation to
testosterone, studies of the effects of high temperature

on Leydig cell function and testosterone production are
apparently absent in the literature. With regard to isolated
germ cells, [121] showed that increasing the incubation
temperature of rat pachytene spermatocytes and round sper-
matids to 37 to 40◦C increased intracellular [Ca2+] ([Ca2+]i)
to levels that modify signaling in these cells [122]. The
intracellular pH in these cells was found to decrease with
increasing temperature. These changes occurred within one
minute of the increase in temperature and can be classified
as early events in the response of these cells to heat stress.
Interestingly, the same combination of changes in these
cellular parameters (increase in [Ca2+]i and decrease in intra-
cellular pH) was associated with apoptotic cells in the testis
[123], strongly suggesting that high temperatures per se can
set physiological conditions in spermatogenic cells that make
them prone to other noxious or proapoptotic stimuli from
Sertoli cells. Furthermore, we recently found that a high tem-
perature (40◦C) induced a rapid increase in reactive oxygen
and/or nitrogen species in pachytene spermatocytes but not
in round spermatids (Pino, Osses, Oyarzun, Farias, Moreno
and Reyes, unpublished results), providing the possible
noxious stimuli that could differentially trigger cell death
in spermatocytes. Thus, oxidative stress seems to be at the
root of the cell changes in the environmental hypoxic testicle
that lead to spermatogenic cell death. This stress seems to be
compounded by the rise in testicular temperature, especially
in chronic hypoxia.

Hypoxia, by triggering in most cells and tissues an HIF-
1α-dependent response, can induce metabolic adaptations
but, on the other hand, hypoxia starts a relatively complex
spectrum of responses that involves not only HIF-controlled
signals and gene expression but also ROS/RNS, AMPK, and
PLA2 activation that appear to determine tissue-specific
effects of the hypoxic state [124]. In relation these responses,
it has been known for almost 20 years that PLA2 and AA
seem to play a role in tissue injury and response under
hypoxia-reoxygenation situations in animal tissues [125–
127]. In the testis, Sertoli cells (SCs) produce arachidonic
acid (AA) and some of its metabolites in an FSH-regulated
manner, [128]. In a SC-derived cell line (TM4), activation
of CD95 (Fas), a pathway known to participate in spermato-
genic cell apoptosis [123, 129], can activate cytosolic PLA2

and AA release [130]. Our unpublished results (Madrid,
Osses, Pino, Oresti, Paillamanque, Moreno and Reyes) show
that AA can induce apoptosis in spermatogenic cells, together
with increases in intracellular Ca2+ and a lowering of intra-
cellular pH, two proapoptotic conditions in these cells [123].
Thus, although still not tested experimentally, hypoxia-
induced PLA2 activation in Sertoli cells and AA release are
possible mechanisms by which hypoxia (environmental and
local) could also help to trigger spermatogenic cell death in
the hypoxic testis.

Some of the cellular and molecular mechanisms of envi-
ronmental hypoxia-induced sperm and endocrine changes
discussed above are apparently corroborated by some treat-
ments that can partially reverse the effects of hypoxia (Tables
1, 2, and 3). Thus, in environmental hypoxia, a serotonin
(5-HT) blocker can reverse the effects of hypoxia on sper-
matogenesis and testosterone production, in agreement with
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Table 2: Pharmacological approaches that modify testicular and sperm functional parameters in varicocele.

Treatment Mechanism Result versus injury Reference

Polydeoxyribonucleotides Adenosine A2A-receptor stimulator
� Histological changes produced by varicocele

� Microvessels
[44]

Aminoguanidine Nitric oxide synthase inhibitor Prevents sperm DNA fragmentation [45]

Aminoguanidine Nitric oxide synthase inhibitor �Sperm vitality, motility, and morphology [45]

EGF Growth factor � Sperm count and motility [46]

Melatonin Antioxidant, hormone
� MDA and Bax levels

� CAT, SOD, and GPx activities
[47]

CAT: catalase; GPx: glutathione peroxidase; GSH: glutathione; SOD: superoxide dismutase.

Table 3: Treatments that improve and/or prevent testicular and sperm damage in experimental testicular torsion.

Treatment Mechanism Results versus injury Reference

Transplanted endotelial progenitor
cells

N/A � Apoptosis
Prevents histopathological damage

[48]

Pretreatment w/ginkgo biloba (EGb
761) Extract of dried leaves

Prevents histopathological damage
� Apoptosis, eNOS mark
� Mean seminiferous tubule diameter

[49]

Pretreatment w/sildenafil citrate
(0.7 mg/kg)

Phosphodiesterase
type 5 inhibitor

� MDA levels and eosinophil counts
Prevents histopathological damage
� GSH, PON1, NO, and blood lymphocyte
counts in plasma

[50]

Pretreatment w/sildenafil citrate
(1.4 mg/kg)

Phosphodiesterase
type 5 inhibitor

� MDA levels
� PON1, vitamin E, β-carotene in plasma, and
GSH levels

[50]

Pretreatment w/melanocortin 4
activator

Melanocortin analog
� IL-6 and TNF-α, Bax
� Bcl-2 expression, Johnsen’s spermatogenesis
score

[51]

Rutin Antioxidant
� MDA levels
� SOD and CAT activities, Johnsen’s
spermatogenesis score

[52]

Gradual detorsion N/A � SOD and GPx activities [53]

Molsidomine Nitric oxide donor
� MDA levels and Cosentino’s score
� Sonic hedgehog and HIF1-α expression

[54]

Cyclosporine and FK-506 Immunophilin ligands
� MDA levels, apoptosis
� CAT, SOD, and Gpx activities

[55]

Pretreatment w/trapidil Vasodilator Prevent histopathological damage [56]

Hemin Iron-containing porphyrin
� NF- kappaB and ERK levels
� heme oxygenase-1

[57]

Pretreatment w/ethyl pyruvate
Antioxidant,

anti-inflammatory

� MDA, myeloperoxidase levels and apoptotic
index
� CAT, GSH, Gpx, SOD activities and sperm
count and motility

[58]

Pretreatment w/losartan, lisinopril
Angiotensin II receptor antagonist,

ACE inhibitor
Prevents histopathological damage in
contralateral testis

[59]

ROS: reactive oxygen species; GSH: glutathione; SOD: superoxide dismutase; eNOS: endothelial nitric oxide synthetase; MDA: malondialdehyde; CHOP:
C/EBP homology protein; CREMτ: cAMP-responsive element modulator-τ; MCP: monocyte chemotactic protein-1; N/A: not available.

the effects of 5-HT on testicular vasculature and testosterone
production [40]. The effect of ibuprofen that appears to
decrease oxidative stress has been attributed to its anti-
vasodilatation actions in the testicle [42]. Furthermore,
antioxidant treatment can also partially reverse the effects

of hypoxia in testis epididymis and sperm [41]. The
apparently contradictory results in terms of hypoxic changes
in the testis obtained by using melatonin in different
routes of administration [41, 42] is puzzling, but this com-
pound has both antioxidant and hormonal properties. How
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the administration route systemically affects these two pro-
perties of melatonin is unknown.

3. Local Hypoxia: Varicocele and
Testicular Torsion

3.1. The Hypoxia-ROS-Temperature Connection in Varicocele.
An important pathology associated with male subfertility
and an increase in intratesticular and seminal ROS levels is
varicocele, which is characterized by abnormally dilated veins
in the pampiniform plexus, and it has been associated with
abnormalities in semen analyses. Varicocele is diagnosed only
in humans and it seems to be associated with the erect posi-
tion whereby one-way valves in the spermatic veins insure
the exit of waste products against gravity [131]. Dysfunction
of the internal spermatic vein valves with age increases the
pressure up to eight times above the physiologic level in
the venous drainage, which deviates testicular venous flow
to other horizontal routes. This unique biological pheno-
menon causes hypoxia and oxidative stress, which severely
impairs spermatogenesis [132]. A diagnosis of varicocele is
made in 35% of men with primary infertility and in appro-
ximately 80% of men with secondary infertility [133, 134].
Varicocele can cause tissue hypoxia and related events such
as angiogenesis by promoting expression of HIF-1α, which
upregulates VEGF and allows expression of different adaptive
cellular mechanisms in response to hypoxia [135–137]. HIF-
1α has been detected in the cytoplasm of germ cells and
vascular endothelium [137]. Furthermore, increased VEGF
expression has been observed in testicular endothelial cells
in men with varicocele and in the germ cell cytoplasm in
rats with experimental varicocele (Figure 2). This elevated
expression of VEGF is likely to have a paracrine effect on
the testicular microvasculature, inducing the growth of new
vessels, as has been observed in men with varicocele [134].
Thus, upregulation of HIF1α seems a feature common to
varicocele, hypobaric hypoxia, and experimental heat stress
alike (Figure 2).

An alternative hypothesis, however, is that high tempera-
ture rather than intratesticular hypoxia is the main source
of oxidative stress in patients with varicocele, which is sup-
ported by three lines of evidence: (1) patients with varicocele
have a higher scrotal temperature and shorter recovery
period after cold stress [138]; (2) varicocelectomy improves
semen parameters, probably by reducing testicular temper-
ature and ROS levels and increasing antioxidant activity in
the seminal plasma [139–141]; (3) increased scrotal tem-
perature but not varicocele grade correlates well with testi-
cular oxidative stress and apoptosis [142].

It is generally accepted that testicular and seminal ROS
levels are important in terms of the deleterious effects of
varicocele on male fertility [109, 143–145]. In fact, H2O2

applied directly in the testis induces germ cell apoptosis,
showing that oxidative stress may directly induce apoptosis
in germ cells [146]. ROS levels in semen samples from men
with varicocele are significantly higher than those of fertile
control men [143, 144, 147], and they are directly related to
the degree of varicocele [148]. In this regard, the damage

caused by varicocele becomes worse as the time between
its first appearance and varicocelectomy increases [149],
indicating that the testes have intrinsic mechanisms for
avoiding permanent damage under certain conditions, but
that damage is inevitable when the hypoxia (or elevated
temperature) is sustained over time. Changes in testicular
tissue have been described in both humans and animal
models of varicocele, particularly in rats, producing smaller
testicles with a decrease in Leydig cell functioning and a low
total sperm count but with no abnormalities in the motility
or morphology of the spermatozoa [150–152].

Different intracellular pathways are activated down-
stream of ROS production, among which the ASK1/p38-
MAPK pathway has been shown to be important in germ
cell apoptosis after heat stress [153–155]. p53, a master
gene in apoptosis and a target of p38 MAPK (Figure 2), is
activated in rats with experimental varicocele [156]. In fact,
the proapoptotic gene Bax, which is a transcriptional target
of p53, is upregulated in experimental varicocele in animal
models [47, 157–159]. In addition, the downregulation of
Bcl-2 and increased expression of caspase-9 and activated
caspase-3 in the ipsilateral testis at eight and 12 weeks after
the onset of varicocele has been documented, indicating
gradually increased testicular tissue apoptosis through the
intrinsic pathway [158]. Therefore, elevated oxidative stress
may lead to an elevated rate of germ cell apoptosis, which
could explain the decrease in sperm count reported in infer-
tile patients with varicocele.

3.2. Testicular Torsion: Hypoxia-ROS and Inflammation. Tes-
ticular torsion is a urological emergency condition causing
pain and eventually leading to total loss of the testis [160,
161]. It consists in the twist or rotation of the vascular
pedicle, and the damage to the testis depends on the deg-
ree of ischemia/reperfusion. It occurs annually in 1/4,000
males younger than 25, affecting 1/160 males by the age of 25
[160, 161]. Animal model studies have shown that 720 degree
torsion induces ischemia sufficient to disrupt the seminif-
erous epithelium [162–164]. Testicular salvage depends on
the degree of torsion and on the time that has elapsed until
repair. Detorsion within 6, 12, and 24 hours of torsion results
in a salvage rate of 90%, 50%, and less than 10%, respectively
[165]. Experimental testicular ischemia/reperfusion (IR)
(e.g., torsion/detorsion) in rats and/or mice induced a
decrease in germ cells, vacuolization of the seminiferous
epithelium, decreases in sperm production, and germ cell
apoptosis [162–167], a pattern of effects very similar to
those of chronic environmental hypoxia, as discussed above.
Several studies have pointed out the importance of ROS
production in the onset of testicular IR response, as evaluated
by thiobarbituric acid reactive substances (TBARSs) or 8-
isoprostane levels [146, 168, 169]. Interestingly, IR promotes
the recruitment of neutrophils to subtunical venules in the
testis. Since neutrophils are a source of ROS in many other
conditions, it is possible that their presence contributes
to oxidative stress, which in turn contributes to germ cell
DNA damage and germ cell demise by either apoptosis or
necrosis [146, 168, 170]. IR induces several bona fide
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apoptosis markers such as DNA fragmentation, activation
of caspase-3, caspase-9, and release of cytochrome C from
mitochondria and upregulation of BAX [166, 171, 172].
Although general caspase inhibitor and caspase-9 inhibitor
prevent germ cell apoptosis in IR testis, it seems that necrosis
may also contribute to germ cell demise [173]. In fact, germ
cells can trigger both the necrotic and the apoptotic program
depending on the stimuli and the time that has elapsed since
the injury [170]. Thus it is possible that germ cell necrosis
may be an early stimulus in order to recruit neutrophils that
eventually promote oxidative stress and the induction of
apoptosis.

IR produces an increase in the proinflammatory cyto-
kines TNFα and IL-1β (Figure 2), which suggests a role for
these cytokines as early mediators of injury in the testis [169].
Upregulation of TNFα and IL-1β is detected as early as 0.5 h
after IR in mice testes, and this precedes the activation of c-
jun N-terminal kinase (JNK) along with two downstream
transcription factors; ATF-2 and c-jun in intratesticular
blood vessels. E-selectin is a transcriptional target of ATF-2
and c-jun, which could explain its upregulation in IR testes
[146, 168, 169]. These results suggest that an increase in
TNFα and/or IL-1β after IR of the testis stimulates the activa-
tion of the JNK signaling pathway leading to the expression
of E selectin in endothelial cells and ultimately neutrophil
recruitment. Interestingly, TNFα and/or IL-1β can recruit
neutrophils in parenchymal testis veins, suggesting the cru-
cial role of these cytokines in the response of testes after IR
insult [169, 174]. TNFα is expressed as a transmembrane
protein in pachytene spermatocytes, round spermatids, and
testicular macrophages [175]. Consequently, the release of
TNFα from the cell surface (shedding of the extracellular
domain) seems to be an important step in the molecular
cascade activated in IR.

The family of membrane-bound metallo proteinases
known as metalloproteases and disintegrins (ADAMs) has
a central role in juxta/paracrine and autocrine signaling by
controlling the ectodomain shedding of different ligands and
receptors such as epidermal growth factor (EGF) or TNFα
[176]. We have found that ADAM17, the main sheddase of
TNFα, is expressed in germ cells, and its activity is neces-
sary to induce apoptosis in physiological conditions [177].
In addition, ADAM17 and ADAM10 are upregulated after
genotoxic damage and their pharmacological inhibition pre-
vents germ cell apoptosis [178, 179]. What is more, signif-
icantly higher levels of TNFα have been found in semen
samples from infertile patients as compared with controls,
suggesting a role for this cytokine in male fertility in general
and specifically in IR-induced pathophysiological changes in
the testis [180–182]. Therefore, it is not far-fetched to pro-
pose hypothetically that IR associated with testicular torsion
could induce activation of ADAM17 and shedding of TNFα
as a primary response to hypoxia and oxidative stress.

A range of pharmacological agents can diminish the dele-
terious effects of varicocele and testicular torsion on several
testicular and semen parameters (Tables 2 and 3). In spite
of the pharmacological diversity observed in those studies,
however, a certain pattern does emerge from the studies cited
in Tables 1, 2, and 3. First, antioxidants improve testicular

function in environmental and local hypoxia, in agreement
with the proposed role of ROS in testicular pathogenesis
in these conditions. Second, the possible protective role of
the cAMP signaling pathway is strongly suggested by the
studies performed on varicocele and testicular torsion. In
organ models of IR (liver, heart) the cAMP signaling pathway
has been shown to be protective in IR-induced cell apoptosis
[183, 184]. Interestingly, no such approach has been tested in
environmental hypoxia studies. Third, a possible role of NO
is suggested by the studies in varicocele and testicular torsion,
although the results in these pathologies are contradictory.
Again, no studies on the role of NO in testicular effects have
been performed on environmental hypoxia.

4. Concluding Remarks

The available data suggest that oxidative and heat stresses
are common features of hypobaric hypoxia, varicocele, and
testicular torsion. These conditions induce also the activation
of the antioxidant defence mechanisms that once overflown
promotes activation of apoptosis and DNA damages in the
developing germ cells. It is unknown, however, whether heat
stress is the cause or consequence of these pathological
conditions. Experimental evidence clearly shows that experi-
mental heat stress mimics some of the pathways and cellular
responses observed in hypobaric hypoxia, varicocele, and
testicular torsion, but there is still a lack of direct evidence
about the real contribution of this parameter to these patho-
logical conditions.

Some of the cellular and molecular mechanisms of envi-
ronmental hypoxia-induced sperm and endocrine changes
discussed above seem to be corroborated by some treatments
that can partially reverse the effects of hypoxia (Tables 1,
2, and 3). New experimental evidence suggests, however,
that previously overlooked molecules such as AMPK, PLA2,
arachidonic acid, and ADAM17 may be important players
in the onset of testicular damage in the hypoxic testis, and
therefore they could constitute new pharmacological targets
in the design of experimental strategies to prevent germ cell
damage and decrease fertility under these conditions.
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