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Nowadays, it is necessary to search for different high-scale production strategies to produce

recombinant proteins of economic interest. Only a few microorganisms are industrially rele-

vant for recombinant protein production: methylotrophic yeasts are known to use methanol

efficiently as the sole carbon and energy source. Pichia pastoris is a methylotrophic yeast

characterized as being an economical, fast and effective system for heterologous protein

expression. Many factors can affect both the product and the production, including the pro-

moter, carbon source, pH, production volume, temperature, and many  others; but to control

all  of them most of the time is difficult and this depends on the initial selection of each

variable. Therefore, this review focuses on the selection of the best promoter in the recom-

bination process, considering different inductors, and the temperature as a culture medium

variable in methylotrophic Pichia pastoris yeast. The goal is to understand the effects associ-

ated with different factors that influence its cell metabolism and to reach the construction

of  an expression system that fulfills the requirements of the yeast, presenting an optimal

growth and development in batch, fed-batch or continuous cultures, and at the same time

improve its yield in heterologous protein production.
©  2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. This is

an  open access article under the CC BY-NC-ND license (http://creativecommons.org/
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he need for new ways to produce recombinant proteins of
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conomic interest has been oriented toward culture processes
n bioreactors under controlled conditions to reduce produc-
ion costs and simplify and facilitate its acquisition.1
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The methylotrophic yeast Pichia pastoris (Komagataella phaf-
fii) is one of the most commonly used expression systems
for heterologous protein production.2 Recombinant protein
obtained in a P. pastoris system exhibits one improved aspect:
the specific activity of the enzyme produced has been shown
to have increased when this was assessed. This is highly
BJM 406 1–9
nfluenced for promoters and temperature used in the heterologous
://doi.org/10.1016/j.bjm.2018.03.010

relevant because when a recombinant protein is destined
for industry use, product yield is an important factor in the
profitability of the process.3 However, the growth of yeast in
culture medium is affected by such factors as: (a) methanol

lsevier Editora Ltda. This is an open access article under the CC
.
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2  b r a z i l i a n j o u r n a l o f m i

concentration, which one is used to induce the heterologous
protein production, but the toxic and inflammatory nature
of methanol restricts its application, especially in edible and
medical products4; (b) carbon sources that can influence both
cell and recombinant protein production either in flasks or
in a bioreactor5; (c) oxygen concentration, which can gen-
erate aerobic or anaerobic environments; (d) temperature,
which affects important cell processes, such as central car-
bon metabolism, stress response and protein folding6; (e)
high protease expression levels; (f) nutrient-deficiency when
grown in defined media; (g) difficulties in systematic study
due to product-specific effects; and (h) health and safety
concerns associated with the storage of large quantities of
methanol. Difficulties also arise that are specific to the culture
methods and control strategies used.7 All these variations in
metabolism produced by cellular and molecular responses to
the media that are highly variable in terms of the growth sta-
bility of the recombinant yeast limit the recombinant protein
production process at some point, resulting in a process with a
lower yield and higher costs. Protein stability is a topic of major
interest for the biotechnology, pharmaceutical and food indus-
tries, and it may primarily consider the half-life of a protein’s
activity. An understanding of protein stability is essential for
optimizing the expression, purification, formulation, storage
and structural studies of proteins.66,67 There is evidence that
demonstrate that the residues flanked by well-conserved seg-
ments among homologous sequences tended to contribute to
the stability of the protein to a greater extent than did residues
flanked by less conserved segments) glycosytation stage: bet-
ter energy interactions have been observed in the glycosylated
protein compared to the non-glycosylated, affecting substrate
affinity and stability that.68,69 Therefore, it is necessary to
know the main factors to control the culture conditions
throughout the process to produce high concentrations of
recombinant proteins. This review focuses on two points:
the selection of the best promoter in the recombination pro-
cess considering different carbon sources as inductors, and
the temperature as a culture medium variable that has been
shown to be related to the uptake of the substrate (inductor) on
methylotrophic Pichia pastoris yeast to understand the effects
on its cell metabolism and to reach the construction of an
expression system that fulfills the requirements of the yeast,
presenting an optimal growth and development in batch, fed-
batch or continuous cultures, and at the same time improve
its yield in heterologous protein production.

Methylotrophic  yeast

Eukaryotic methylotrophs, which are able to obtain all the
carbon and energy needed for growth from methanol, are
restricted to a limited number of yeast species. When
these yeasts are grown on methanol as the sole carbon
and energy source, the enzymes involved in methanol
metabolism are strongly induced, and the membrane-bound
organelles, peroxisomes, which contain key enzymes of
Please cite this article in press as: Zepeda AB, et al. Carbon metabolism i
protein production using Pichia pastoris yeast. Braz J Microbiol. (2018), https

methanol metabolism, proliferate massively. When cells
grown in methanol are transferred to culture media con-
taining different carbon sources, such as glucose or ethanol,
the peroxisomes quickly disappear as a result of active
 i o l o g y x x x (2 0 1 8) xxx–xxx

degradation, which involves the proteolytic degradation of the
peroxisomes.8 Like other yeasts, methylotrophic yeasts can
use glycerol, ethanol and acetate.5,9,10

Complete oxidation of methanol to CO2 and H2O in
methylotrophic microorganisms includes both dissimilatory
pathways (energy generation) and assimilatory pathways
(biosynthesis of cell material). However, this metabolism in
methylotrophic yeasts differs from that of methylotrophic
bacteria in three main respects11:

a) The nature of the enzymes involved: Yeasts do not have
methanol dehydrogenases for methanol oxidation, but
rather alcohol oxidases.

b) Compartmentalization of the process: In yeasts, part of
the methanol oxidation occurs within the cell organelles
called peroxisomes. These membranous compartments
have some of the enzymes and metabolites involved in
the methanol oxidation process, such as alcohol oxidase
and catalase. During growth in the presence of methanol,
peroxisomes can occupy 90% of the cell volume, whereas
in the presence of other carbon sources, like glucose or
glycerol, they are undetectable.

(c) The energy generation pathway: In methylotrophic bacte-
ria, methanol oxidation is linked to the electron transport
chain. However, in methylotrophic yeasts, reducing power
is produced in the form of NADH in reactions once the
methanol has been fixed in formaldehyde. This NADH is
produced in the cytosol, oxidized in the absence of spe-
cific transporters, and moves toward the interior of the
mitochondrion due to the activity of a NADH dehydroge-
nase located on the outside of the internal mitochondrial
membrane.

The main application for methylotrophic yeasts, or at least
the most important in the biotechnological sphere, was the
discovery of their exceptional ability to act as host cells to
heterologous proteins.8 The genera Pichia and Hansenula are
interesting and advantageous alternatives to conventional for-
eign protein expression systems, like Escherichia coli or the
commonly known bread yeast Sacharomyces cerevisiae.12

Pichia  pastoris  yeast

Pichia pastoris is one of the most important hosts for recom-
binant protein production in the biotechnological industry,
mainly related to pharmaceutical production.13 This yeast
was first described by Guilliermond in 1919. Its morphology
is highly variable, able to present spherical or oval-shaped
cells, single or combined in pairs. However, the cells can alter
their shape according to the culture conditions; for exam-
ple, they are frequently oval in favorable growth conditions
but under no circumstances form pseudohyphae or hyphae.
In solid medium they form white or cream-colored non-
filamentous colonies. Under a microscope several buds can
be observed.14
BJM 406 1–9
nfluenced for promoters and temperature used in the heterologous
://doi.org/10.1016/j.bjm.2018.03.010

P. pastoris is anaerobic, facultative and methylotrophic,
which means that it metabolizes methanol as a carbon and
energy source. This capacity is conferred by the AOX (alco-
hol oxidase) gene, which is responsible for the induction of
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Table 1 – Production of heterologous proteins in different strains of the yeast Pichia pastoris, indicating the temperature
and carbon source used in the induction phase, the promoter and the protein yield produced.

Protein Strain Promoter Carbon source Culture temperature Production yield Ref.

Endo-1,4-�-mannanase GS115 AOX1 Methanol 28 ◦C 0.262 mg ml−1  53

Bovine �-lactoglobulin GS115 AOX1 Methanol 30 ◦C 1 mg ml−1 54

Human collagen �1(III) chain GS115 AOX1 Methanol 28.5 ◦C 3.36 mg ml−1 55

Porcine lactoferrin SMD 1168 GAP Sorbitol 30 ◦C 0.012 mg ml−1  56

Vitreoscilla hemoglobin X-33 ADH2 Glucose 30 ◦C 16  nmol/g dry cell 57

Phytase C (PhyC-R) GS115 AOX1 Methanol 30 ◦C 0.71 mg ml−1 58

Lipase X-33 FLD1 Glycerol 30 ◦C 2.5 mg ml−1 23

Lipase X-33 FLD1 Sorbitol 30 ◦C 3.3 mg ml−1 23

Lipase X-33 FLD1 Methanol 30 ◦C 2.4 mg ml−1 23

Lipase LIP2 (YlLIP2) X-33 GAP Glucose 28 ◦C 120 g DCW/l 43

Lipase X-33 AOX1 Methanol 30 ◦C 60.7 mg ml−1 59

Lipase KM71 AOX2 Methanol 30 ◦C 35.5 mg ml−1 59

Lipase X-33 FLD1 Sorbitol 30 ◦C 50.4 mg ml−1 26

rhIL-2-HSA fusion protein GS115 GAP Glucose 25 ◦C 0.25 mg ml−1 60

AfCel12A endonuclease PichiaPinkTM GAP Glycerol 25 ◦C 7.3 mg ml−1 61

T˛Cel5A endonuclease PichiaPinkTM GAP Glycerol 25 ◦C 5.4 mg ml−1 61

T˛Cel5A endonuclease PichiaPinkTM GAP Glucose 30 ◦C 4.9 mg ml−1 61

Human antithrombin (rAT) RH101 AOX2 Methanol 25 ◦C 0.1 mg ml−1 62

B-cell maturation antigen GS115 AOX1 Methanol 30 ◦C 0.207 mg ml−1  63

Fungal immunomodulatory protein GS115 AOX1 Methanol 25 ◦C 0.149 mg ml−1  64
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Human alpha-defensin 5 GS115 AOX1

he enzyme alcohol oxidase, the enzyme that catalyzes the
xidation of methanol to formaldehyde and hydrogen per-
xide. In the yeast genome, the location of the AOX gene is
sed to insert a vector. This vector contains a heterologous
ene, a selectable marker gene (histidine dehydrogenase gene)
nd a secretion signal (� factor).15–18 Thus, adding methanol
eads to the expression of the heterologous gene responsible
or the synthesis of recombinant proteins, such as antibody
ragments.4

For heterologous protein production in cultures in a fer-
enter, a high-density three-step fermentation scheme is

ormally used. In the first stage, the recombinant yeast is
ultured in a saline medium with a non-fermentable car-
on source, such as glycerol. Once the glycerol is depleted,
he second phase (transition phase) is begun by adding glyc-
rol at a limiting growth rate. The second phase is important
ecause the by-products generated (for example, ethanol) dur-

ng the batch phase are consumed and the cells are prepared
or induction. The third phase (induction phase) is started
y adding limited concentrations of methanol, which results
n recombinant protein production.16 After being transferred
o the medium with methanol, this organism undergoes a

assive proliferation of peroxisomes while they induce the
ynthesis of the more  than 10 enzymes needed for methanol
etabolism, including the peroxisomal enzyme AOX.8 The

trong induction of protein synthesis by methanol in P. pastoris
as been used as an ideal system of different heterologous
ene expression, as can be seen in Table 1; moreover, this
east has become one of the most important microorgan-
sms, allowing heterologous protein expression by secretion

ithin the supernatant of the (extracellular) culture or by
ntracellular localization.13,19 This model of expression makes
Please cite this article in press as: Zepeda AB, et al. Carbon metabolism i
protein production using Pichia pastoris yeast. Braz J Microbiol. (2018), https

t possible to obtain from milligrams to grams of functionally
ctive recombinant protein, which is used in basic research
nd therapeutic administration (Table 1). This system has sev-
thanol 30 ◦C 0.165 mg ml−1  65

eral characteristics in addition to high growth densities and
productivity. These characteristics are:

a) The cost of the media, equipment and infrastructure of
the yeast cultures are much more  economical than those
from cells from mammals and insects.13

b) The protein expression system designed could be induced
by adding methanol, as an alternative for the production of
recombinant proteins in P. pastoris, and it is generally inte-
grated into the chromosome of the yeast to gain stability
in the genetic construct.20

(c) This microorganism makes post-translational modifica-
tions like glycosylation, adding a small sugar pattern
very similar to the eukaryotic cells. For this reason,
methylotrophic yeasts such Pichia pastoris and Hansenula
polymorpha are preferred as the overall length of the man-
nose outer chains is shorter than in S. cerevisiae.21,22

d) The possibility of directly secreting the cloned protein,
which in practical terms means a pre-purification step.13,22

(e) This yeast does not produce endotoxins; therefore, it may
be considered a safe microorganim.22

The heterologous protein expression system in P. pastoris
is based mainly on the use of the alcohol oxidase enzyme
PAOX1 promoter, which is heavily regulated and induced by
methanol23; however, there are several parameters that can
affect this expression system. Some are intrinsic to the expres-
sion system, for example the Mut phenotype of the strain,
the insertion site of the gene of interest in the cell genome,
the number of copies of the foreign gene, the type of intra or
extracellular expression, the nature of the secretion signal (in
case of extracellular expression) or the activity of endogenous
BJM 406 1–9
nfluenced for promoters and temperature used in the heterologous
://doi.org/10.1016/j.bjm.2018.03.010

proteases. Other factors are related to the protein in ques-
tion to be expressed, like the GC/AT content of the gene to be
expressed or the degree of toxicity of the foreign protein for the
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host cell. Also, other important factors are the stability of its
mRNA, as well as the post-transcriptional and/or translational
modifications required.12

Influence  of  the  carbon  source  on  the  culture

Methanol  metabolism  in  P.  pastoris

The cytosolic and peroxisomal enzymes involved in methanol
metabolism are synthesized when P. pastoris grows in the
presence of methanol. When cells adapted to grow in
methanol are transferred to a medium with glucose or ethanol,
these enzymes are sequestered selectively and quickly, and
degraded in the vacuoles of the yeast.10

Methanol metabolism begins inside the peroxisomes
(Fig. 1). The metabolism begins when the methanol is oxidized
in the presence of oxygen by the enzyme alcohol oxidase,
producing formaldehyde and H2O2. Hydrogen peroxide is
toxic to the cell; therefore, it is retained in the peroxisome
until the catalase converts it into H2O and O2. Formaldehyde
through the action of the transketolase dihydroxyacetone
synthase (E.C.2.2.1.3) enzyme is turned into dihydroxyace-
tone (DHA) and glyceraldehyde-3-phosphate (GA3P). DHA is
Please cite this article in press as: Zepeda AB, et al. Carbon metabolism i
protein production using Pichia pastoris yeast. Braz J Microbiol. (2018), https

released to the cytosol and phosphorylated by dihydroxyace-
tone kinase (E.C. 2.7.1.29) enzyme to form dihydroxyacetone
phosphate (DHAP). DHAP can undergo two reactions: (1)

PEROXISOME

Methanol O2

H2O2Formaldehyde

AOX1

DAS1

DHAK

GADPH

PGK

PGM

ENO PK

PDC

ADH

LDH

TP1 FBA

DHAGAP

DHA GAP

DHAP

1,3BPG

GA3P

3PG

2PG PEP Pyruvate

Ethanol Acetaldehyde La

1

Methanol

Glycerol

G3P

Fig. 1 – Metabolic network of simplified carbon of Pichia pastoris.
metabolism of glycerol and methanol.
 i o l o g y x x x (2 0 1 8) xxx–xxx

triose phosphate interconversion through the action of the
triose phosphate isomerase (E.C. 5.3.1.1) enzyme to form
GA3P and, therefore, to feed the second phase on the
glycolytic pathway; and (2) the reaction most frequently
reported in the literature is the condensation of DHAP with
a glyceraldehyde phosphate (GAP) molecule to form fruc-
tose 1,6 bisphosphate (1,6FBP) and then fructose 6-phosphate
(F6P). In these transformations the enzymes fructose 1,6
bisphosphate aldolase (FBA, E.C.4.1.2.13) and fructose 1,6
bisphosphate (FBPase, E.C.3.1.3.11) intervene respectively;
the latter is part of the process known as gluconeogene-
sis. Alternatively, F6P can form biomass or be incorporated
into the pentose phosphate pathway (pentose pathway) to
form xylulose 5-phosphate (Xu5P) and resupply the cycle in
DHAP; likewise, DHAP is regenerated several times, which
favors biomass formation. The remaining formaldehyde from
the methanol oxidation flows into the cytosol, where it
reacts with glutathione through the enzymes formalde-
hyde dehydrogenase (E.C.1.2.1.1) and formate dehydrogenase
(E.C.1.2.1.2) to form CO2 with detachment of NADH+H (energy
source).24,25

It is noteworthy that the initial oxidation of methanol
to formaldehyde does not generate any type of metabolic
energy (either in the form of reducing power, NADH, or in the
BJM 406 1–9
nfluenced for promoters and temperature used in the heterologous
://doi.org/10.1016/j.bjm.2018.03.010

form of ATP), strongly affecting (negatively) the growth perfor-
mance of these microorganisms with respect to methanol and
oxygen.24

H2OCAT
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There is evidence that P. pastoris can grow in three carbon
ources (glycerol, methanol and ethanol) as a sole carbon and
nergy source. Diauxic growth has been observed when two of
he three carbon sources are present, particularly in ethanol-
lycerol and ethanol-methanol mixtures, with glycerol being
referred over ethanol and methanol, and ethanol being pre-
erred over methanol. In the first case, once all the glycerol has
een consumed, the use of ethanol is accompanied by a tem-
orary accumulation of acetate, which later served as a carbon
ource, whereas in the second case, this accumulation is very
ow. Another important aspect is that in cultures in presence
f glycerol and methanol a diauxic growth is not observed
ue to methanol begins to be consumed before glycerol has
een spent from the medium. It is worth noting that most
f the enzymes involved in methanol metabolism differ to
hose of glycerol. Otherwise, when more  of one carbon source
s present, the order of use is: glycerol, ethanol, acetate (which
s accumulated due to the use of ethanol) and methanol.16

thanol  metabolism  in  P.  pastoris

lcoholic fermentation, which depends on the respiratory
apacity and metabolic rate of the glucolysis, can be triggered
rom pyruvate (Fig. 1). In this process, pyruvate decarboxyl-
se (E.C.4.1.1.1) transforms pyruvate into acetaldehyde and
he latter is reduced to form ethanol, a reaction catalyzed
y the enzyme alcohol dehydrogenase (E.C.1.1.1.1). In addi-
ion, ethanol can be used as a carbon and energy source if
he respiratory capacity of the yeast is re-established. In this
ase, ethanol would be transformed into acetaldehyde by the
lcohol dehydrogenase and then into acetate by the acetalde-
yde dehydrogenase (E.C. 1.2.1.10) and finally the acetyl-CoA
ynthase converts it to acetyl-CoA.24,25

Glycerol is a non-fermentable carbon source and P. pastoris
s not considered a fermentative yeast; however, ethanol is
ccumulated during the culture when is used glycerol at a
igh feed rate. This phenomenon has been reported on sev-
ral occasions but the mechanism has yet to be explained.
ome authors have considered that ethanol is metabolized
o acetaldehyde and then to acetate, which is assimilated as
cetyl-CoA, a process which has been described in H. poly-
orpha and for P. methanolica. The regulation of the methanol
etabolism in methylotrophic organisms is a complex process

hat includes the synthesis, activation and degradation of the
nzymes involved. These enzymes are induced by methanol,
ormaldehyde and formate (positive effectors). However, the
ctivity of the enzyme alcohol oxidase is reduced by glucose
nd ethanol (negative effectors) through two regulation mech-
nisms: catabolite repression and inactivation. The first of
hese mechanisms involves the control over RNA synthesis,
nd the second involves enzyme inactivation or degrada-
ion. Acetate formation as a result of the use of ethanol
epresses the expression of the alcohol oxidase while it is
epleted.16
Please cite this article in press as: Zepeda AB, et al. Carbon metabolism i
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espiro-fermentative  metabolism

t should be noted that P. pastoris is a microorganism that
refers a respiratory metabolism, thereby avoiding the typical
 o l o g y x x x (2 0 1 8) xxx–xxx 5

undesirable by-product generation of fermentative processes,
like ethanol, which facilitates its culture at high cell densi-
ties (>100 g of weight per L−1). Reaching high biomass levels is
highly desirable in the expression of proteins associated with
cell growth.26

The high cell densities in P. pastoris yeast are related
to a change from a respiratory metabolism to a respiro-
fermentative one.27,28 This is very similar to what has been
observed in the metabolism of cancer cells, where a high rate
of proliferation is observed that generates genetic changes
related to the increased metabolism. Another important rea-
son for a change in metabolism is the adaptation of tumor
cells to the microenvironment. Hypoxic areas are frequently
found due to the rapid tumor growth. In conditions of severe
hypoxia, the cells are forced into an anaerobic glycolysis as
their primary energy source (the Pasteur effect).29 Effects of
oxygen transfer on recombinant protein production by Pichia
pastoris under GA3P promoter producing recombinant glucose
isomerase were investigated by Güneş and Ç alık.30 Two groups
of oxygen transfer strategies were applied, one of which was
based on constant oxygen transfer rate where the aeration rate
(QO/V) = 3 and 10 vvm, and the agitation rate was N = 900 min−1;
the other one was based on constant dissolved oxygen concen-
trations (CDO) = 5, 10, 15, 20 and 40% in the fermentation broth,
by using predetermined exponential glucose feeding with
�o = 0.15 h−1. The highest cell concentration was obtained as
44 g L−1 at t = 9 h of the glucose fed-batch phase at CDO = 20%
operation while the specific enzyme activities revealed that
keeping CDO at 15% was more  advantageous at the expense of
relatively higher by-product formation and lower specific cell
growth rate.

Some  promoters  used  to  induce  heterologous
proteins

Alcohol  oxidase

The enzyme AOX (EC 1.1.3.13) belongs to the family of glucose-
methanol-choline oxidoreductases, catalyzing the oxidation
of short aliphatic alcohols, such as methanol, ethanol and
1-propanol. It is mainly found in the peroxisomal matrix of
methylotrophic yeasts. The active mature form of AOX is
an oligomer: AOX in some methylotrophic yeast species is a
molecule of high molecular weight (600 kDa) that consists of
eight identical subunits, each of which have as a prosthetic
group a non-covalently bonded flavin adenine dinucleotide
(FAD) molecule, although tetrameric and hexameric forms
have also been found (31). This enzyme is encoded by the AOX1
gene, and presents low affinity for O2, with the methanol oxi-
dation rate in cell suspensions being linearly proportional to
the oxygen concentration dissolved in the medium. The cat-
alytic activity of this enzyme is below its optimal conditions,
which is why the organism compensates it with an increase
in its synthesis rate in order to obtain high concentrations of
the enzyme (Table 1).32
BJM 406 1–9
nfluenced for promoters and temperature used in the heterologous
://doi.org/10.1016/j.bjm.2018.03.010

AOX is a key enzyme in methanol metabolism and cat-
alyzes the first step in the catabolism of methanol: oxidation
of methanol to formaldehyde with the resulting produc-
tion of H2O2. It presents two isoenzymes, AOX1 and AOX2,
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which share 97% identity in the amino acid sequence, but
their expressions are controlled by different promoters.31

There are three types of P. pastoris host strains available
that differ from their ability to metabolize methanol and
thus from their oxygen consumption rate. These are the
Mut+ phenotype (wild-type strain, high oxygen consumption),
MutS (methanol utilization slow, resulting from AOX1 dele-
tion, intermediate oxygen consumption) and Mut− (methanol
utilization minus, resulting from the double AOX1-AOX2 dele-
tion, low oxygen consumption).11,33 The Mut+ phenotype is
mainly used for recombinant protein productions, although
the MutS phenotype has been used in some other cases.
However, the use of methanol as the sole carbon source
during the induction phase for protein production poses
one major drawback for Mut+ strains (and MutS in a lower
extent): as a high-degree reductant with a high heat of
combustion, methanol catabolism requires a high oxygen
consumption in aerobic conditions leading accordingly to a
huge amount of heat production.34–36AOX1 constitutes the
majority of the AOX protein in the cell, and is the main
contributor for methanol metabolism; the growth of a line
with defective AOX1 (MutS) is very slow in the medium with
methanol, whereas a defect in AOX2 has little effect on
growth.31,33 In MutS strains the force of the AOX1 promoter can
be directed mainly toward recombinant protein production
instead of using energy for AOX1 protein production. Nev-
ertheless, most researchers use a wild type strain, although
some researchers showed that MutS strains were advanta-
geous for production.35,37

Formaldehyde  dehydrogenase

The strength of the formaldehyde dehydrogenase (FLD1) pro-
moter is comparable to the AOX promoter, which makes it an
attractive alternative for recombinant protein production.38

This promoter has the flexibility to induce high expression
levels using methanol or methylamine.39 In addition, it has
been shown that the use of sorbitol as a carbon source com-
bined with methylamine as a nitrogen source is the base for
developing methanol-free fed-batch fermentation processes
for the production of heterologous proteins in P. pastoris based
on the FLD promoter.26

Although the cells have a great capacity to regenerate the
cofactors (NADH and NAD), the cellular demand and high
recombinant enzyme activity in combination with their high
overexpression within the cell can produce a limitation of
the cofactor for the biotransformation process.40 In this situa-
tion, FLD has had a large impact on improving the theoretical
NADH formation rate, as this is a limiting step in the methanol
dissimilation pathway. By contrast, both the increase in for-
mate dehydrogenase (FDH) activity and the increase in the
Vmax of AOX (over 0.3 U/mg) were at a very low theoretical
NADH formation rate; additionally, the formaldehyde gener-
ated as a by-product of the AOX pathway strongly inhibits
FLD, resulting in NADH formation problems.41 On the other
Please cite this article in press as: Zepeda AB, et al. Carbon metabolism i
protein production using Pichia pastoris yeast. Braz J Microbiol. (2018), https

hand, compared with the AOX promoter, the FLD promoter has
presented significantly better results in terms of yield, produc-
tivity and specific productivity in systems expressing the same
protein.26
 i o l o g y x x x (2 0 1 8) xxx–xxx

Glyceraldehyde-3-phosphate  dehydrogenase
(GAP)

The GAP promoter is used for the constituent expression of
several heterologous proteins30,42–44; moreover, based on the
expression system, P. pastoris has been shown to improve
the yield in the production of proteins compared to the
methanol-inducible promoter AOX1.  Added to this, use of this
promoter does not require methanol use,45 which implies that
it is not necessary to change the carbon source during the
growth and induction process, meaning the culture is easier
to implement,39 showing great potential for the execution of
continuous cultures.45 Nevertheless, as this promoter is con-
stituently expressed, it is not a good choice for the production
of proteins that are toxic to the yeast.39

The activity of the GAP promoter in cells growing with
glycerol and methanol are approximately two thirds and one
third of the level observed for glucose, respectively.39 It must
be considered that glucose is the most frequently used sub-
strate for the regeneration of nicotinamide cofactors for cell
metabolism.46 These are important in the amino acid and pro-
tein syntheses which impact on the levels of transcripts and/or
proteins related to ribosome biogenesis and translation.47

Alcohol  dehydrogenases

The presence of two alcohol dehydrogenases (mitochondrial
ADH and ADH3) has been observed at the end of the glyc-
erol batch phase, indicating the formation of ethanol, which
was confirmed by gas chromatography (1.3 g L−1 of ethanol).
Previous research has also documented ethanol formation by
P. pastoris during growth in excess glycerol. Surprisingly, the
number of both enzymes increased even more  in the methanol
fed-batch phase (0.3 g L−1), indicating possible participation in
metabolic activities beyond the ethanol metabolism. In fact, it
has been suggested that the proteins in the ADH family of
other methylotrophic yeasts (e.g., C. boidinii)  are involved in
detoxification by formaldehyde by means of methyl formate
formation. A similar role can also be attributed to ADHs in P.
pastoris.48

Recombinant protein production under the control of the
ADH3 promoter was compared to both AOX1 promoter and
GAP promoter in Pichia pastoris expressing the Aspergillus niger
xylanase (XylB) gene initiated by adding ethanol, methanol and
glucose, respectively in the culture medium, where extracel-
lular protein production yield for ADH3 promoter (3725 U/mL)
was higher than for AOX1 promoter (2095 U/mL) and GAP pro-
moter (580 U/mL) at fermenter scale carried out for 72 h at
30 ◦C, pH 5 and 30% dissolved oxygen.9

Influence  of  temperature  on  cultures

There is evidence that the biggest bottleneck in terms of
BJM 406 1–9
nfluenced for promoters and temperature used in the heterologous
://doi.org/10.1016/j.bjm.2018.03.010

heterologous protein secretion is protein folding and cell
secretion machinery due to the secretion of proteases into
the medium, possibly due to increased cell lysis, caus-
ing a rise in proteolytic degradation, which is a significant
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roblem in many  high cell-density cultures.6,49 Previous stud-
es have reported that the decrease in growth temperature
an lead to an improvement in the production of batch, fed-
atch and continuous culture systems.47,50 Concerning the
ositive effect of the reduction in growth temperature on spe-
ific heterologous protein productivity, it is believed that at
east during the methanol cultures, a reduction in cell lysis and
roteolytic activity is responsible for the high yield of culture
roduction at low temperatures, although no detailed studies
s yet exist in this regard.6

Use of the temperature-limited fed-batch (TLFB) technique
s an alternative fed-batch technique in which the common

ethanol limitation is replaced by temperature limitation in
rder to avoid oxygen limitation at high cell density. This tech-
ique has resulted in higher cell density, lower cell death,
igher concentration of the product and drastically lower pro-

eolytic degradation of the recombinant protein compared
o corresponding methanol limited P. pastoris bioreactor cul-
ures. It has been observed that working on cultures with low
emperatures (12 ◦C), and considering that all the substrates
resent are not in limiting conditions, the dissolved oxygen
ension (DOT) can be kept constant, while the cells are main-
ained at their maximum growth rate (�) at all times, which
nables the acquisition of a high biomass. The existing rela-
ion between growth rate and temperature is usually described
ith the Arrhenius plot, which has made it possible to deter-
ine that P. pastoris is a rather psychotrophic organism that

an grow at a temperature as low as 12 ◦C.49

Studies at different temperatures have indicated that
ethanol is more  toxic at 30 ◦C than TLFB processes, which

se lower temperatures, although the latter uses much higher
ethanol concentrations. In addition, the AOX promoter

resents a much higher transcriptional capacity.49 However,
he environmental changes are perceived at other levels more
han at transcript level; for example, proteins with modified
atalytic properties or changes at metabolite level.51 All these
ata are an indicator that cultures at low temperatures in TLFB
rocesses result in a reduced extracellular proteolysis for two
easons49: (a) purely thermodynamic reasons and (b) a reduced
elease of proteases from lysed cells. The proteolytic degra-
ation of recombinant proteins secreted in high cell-density
ermentations has been widely reported. In methylotrophic
easts like Pichia the proteolytic activity and recombinant
rotein degradation are attributed to methanol metabolism
ombined with cell lysis at the end of fermentation. It has
lso been reported that proteolytic degradation can be reduced
hrough the careful manipulation of pH and temperature.52

ith regard to cell viability, both at very low (10 ◦C) and very
igh temperatures (37 ◦C), suboptimal growth conditions have
een observed that prevent a fermentation process longer
han 24 h.51

Dragosits et al.6 determined that these reasons may not
e the only ones to generate both cell density and low anti-
ody production. They observed that the proteins involved in
rotein folding and secretion stayed constant or decreased
uring low growth temperatures (20 ◦C and 25 ◦C), whereas
t 30 ◦C, the transcript levels dropped, which would partly
Please cite this article in press as: Zepeda AB, et al. Carbon metabolism i
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xplain the low antibody production. This may be linked to
ther factors such as mRNA  stability, protein synthesis rate
nd protein folding. All these effects may trigger a greater
 o l o g y x x x (2 0 1 8) xxx–xxx 7

secretion capacity at 25 ◦C and 20 ◦C as a “secondary effect”.
On the other hand, Zhong et al.53 observed that cultures at
high temperatures presented a prolonged accumulation of the
recombinant protein of interest in immature form in the endo-
plasmic reticulum, which led to high stress in this organelle
and subsequent cell death. However, when the production rate
of the recombinant protein fell as the culture temperature
dropped, the stress of the endoplasmic reticulum was indeed
mitigated, preserving the folding capacity of the endoplasmic
reticulum and enhancing cell viability, which is consistent
with other reports on the positive effects of cultures at low
temperatures.

Innovation in industrial processes with an impact on effi-
cient production is currently the major challenge for industry.
A high number of enzymes are used at different levels of the
process; the search for new alternatives with better charac-
teristics has become a field of study of great interest.3 Pichia
pastoris, a methylotrophic yeast, is an established system
for the production of heterologous proteins, particularly bio-
pharmaceuticals and industrial enzymes.20 One of the most
important factors to improve recombinant protein produc-
tion, used nowadays to a large extent as biopharmaceuticals,
involves understanding how the cell metabolism activates and
mainly how this can be influenced under the different envi-
ronmental conditions and/or medium culture to which the
cells can be exposed. To maximize and optimize the produc-
tion of recombinant products, recent molecular research has
focused on numerous issues including the design of expres-
sion vectors, optimization of gene copy number, co-expression
of secretory proteins such as chaperones, engineering of
glycosylation and secretory pathways, etc. However, the physi-
ological effects of different culture strategies are often difficult
to separate from the molecular effects of the gene con-
struct (e.g., cellular stress through over-expression or incorrect
post-translational processing). Hence, overall system opti-
mization is difficult, even though it is urgently required in
order to describe and understand the behavior of new molec-
ular constructs.20

Conclusion

It is important to consider that heterologous protein pro-
duction depends of multiple factors (agitation, substrate
concentration, inducer concentration, pH and others) that are
difficult to control overall, because they all influence the pro-
tein expression system internally, and thus the quality and
quantity of the desired product. Understanding the effects
of carbon source and temperature on the metabolism of P.
pastoris yeast is crucial to developing a suitable work method-
ology, starting with the choice of the appropriate promoter, as
the use of a certain substrate and variation in the culture con-
ditions can activate different metabolic pathways, activating
enzymes that can help or harm the growth and development
of the yeast and/or the recombinant protein production.
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